Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field
نویسندگان
چکیده
In this paper, central discontinuous Galerkin methods are developed for solving ideal magnetohydrodynamic (MHD) equations. The methods are based on the original central discontinuous Galerkin methods designed for hyperbolic conservation laws on overlapping meshes, and use different discretization for magnetic induction equations. The resulting schemes carry many features of standard central discontinuous Galerkin methods such as high order accuracy and being free of exact or approximate Riemann solvers. And more importantly, the numerical magnetic field is exactly divergence-free. Such property, desired in reliable simulations of MHD equations, is achieved by first approximating the normal component of the magnetic field through discretizing induction equations on the mesh skeleton, namely, the element interfaces. And then it is followed by an element-by-element divergence-free reconstruction with the matching accuracy. Numerical examples are presented to demonstrate the high order accuracy and the robustness of the ∗Corresponding author. Email addresses: [email protected] (Fengyan Li), [email protected] (Liwei Xu), [email protected] (Sergey Yakovlev) Preprint submitted to Journal of Computational Physics March 24, 2011 schemes.
منابع مشابه
Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations
In this paper, we propose and numerically investigate a family of locally divergence-free central discontinuous Galerkin methods for ideal magnetohydrodynamic (MHD) equations. The methods are based on the original central discontinuous Galerkin methods (SIAM Journal on Numerical Analysis 45 (2007) 2442-2467) for hyperbolic equations, with the use of approximating functions that are exactly dive...
متن کاملArbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations
Ideal magnetohydrodynamic (MHD) equations consist of a set of nonlinear hyperbolic conservation laws, with a divergence-free constraint on the magnetic field. Neglecting this constraint in the design of computational methods may lead to numerical instability or nonphysical features in solutions. In our recent work (Journal of Computational Physics 230 (2011) 48284847), second and third order ex...
متن کاملNew central and central discontinuous Galerkin schemes on overlapping cells of unstructured grids for solving ideal magnetohydrodynamic equations with globally divergence-free magnetic field
New schemes are developed on triangular grids for solving ideal magnetohydrodynamic equations while preserving globally divergence-free magnetic field. These schemes incorporate the constrained transport (CT) scheme of Evans and Hawley [39] with central schemes and central discontinuous Galerkin methods on overlapping cells which have no need for solving Riemann problems across cell edges where...
متن کاملConvergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the MHD system
We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition ∆t ∼ h, we obtain error estimates in L of order O(∆t + h) where m is the degree of the local polynomials.
متن کاملStability Analysis and Error Estimates of an Exactly Divergence-Free Method for the Magnetic Induction Equations∗
In this paper, we consider an exactly divergence-free scheme to solve the magnetic induction equations. This problem is motivated by the numerical simulations of ideal magnetohydrodynamic (MHD) equations, a nonlinear hyperbolic system with a divergence-free condition on the magnetic field. Computational methods without satisfying such condition may lead to numerical instability. One class of me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011